
Reforming the NSIP regime: Balancing speed and quality in infrastructure development
by Andy Gregory
View post
The COVID-19 pandemic is recognised as one of the major shocks of the 21st century. Nevertheless, there are important global ‘megatrends’ that are critical to the survival of humans and existing ecosystems. These megatrends are tied to economic recovery, representing challenges around growth and environmental sustainability. The global megatrends include climate change and resource stress, which stem from population growth, resource consumption and the need for more renewable technologies.
The Australian government has committed to reducing greenhouse gas (GHG) emissions to 26 – 28% below 2005 levels by 2030. All Australian states and territories have an aspirational goal of achieving net-zero emissions by the mid-century. At a technical level, actions to reduce emissions might seem obvious. However, to be feasible, the economic and social implications of emissions reduction goals and proposed strategies are less well understood and need to be tested. Collaboration among government, businesses and the community is critical to developing a common understanding of pathways toward significant emissions reduction and sustainable, resilient economies simultaneously.
The global climate policy instruments, particularly the Paris Agreement, provides the legal framework for countries to plan and deliver on their commitments to reduce their GHG emissions. While the traditional energy sources (coal, gas, oil, solar and wind) will continue to play an important role in Australia’s future, the transition to a low carbon economy will require a diverse mix of other transformational low emission technologies.
Adoption of low emission technologies will help Australia in meeting its international climate change obligations. A Long-term Emissions Reduction Strategy is currently under development by the Commonwealth Government, and at its core is Australia’s Technology Investment Roadmap, which highlights priority low emission technologies. Production of dispatchable low-carbon electricity through implementation of energy from waste and adoption of carbon capture and storage at conventional power plants are key investment opportunities that reduce GHG emissions from the electricity sector.
Energy from waste (EfW) is the term used to describe the treatment of waste to harness energy from material that would otherwise go to landfill. The energy is created either by treating residual waste (i.e., waste that cannot be recycled) using high temperature treatment technologies (e.g., combustion or gasification) or by treating organic waste including sewage sludge, using biological anaerobic digestion for energy. The National Waste Policy Action Plan sets a target of 80% average resource recovery rate from all waste streams by 2030 (Department of the Environment, 2019). The national resource recovery rate in 2018-19 was 63% (Blue Environment, 2020). To achieve the 2030 national resource recovery target, a fully integrated waste and resource recovery system, which includes energy from waste, will be critical. Hence EfW facilities that turn urban waste into energy are a major investment opportunity in Australia. There are two main options when it comes to EfW facilities:
The water industry is currently facing numerous challenges, risks and opportunities to which utilities must respond. Some of the key challenges include the pressures of ageing infrastructure and a growing population, changing planning and regulatory environments, transitioning energy markets, technology changes and climate change impacts. For many water utilities, capital works for wastewater treatment infrastructure upgrades that could have a significant impact on the treatment plant’s overall energy balance would typically include modifications to the incoming solids capture process, primary followed by secondary treatment, nutrient removal, and sludge stabilisation processes.
Water utilities can adopt a ‘systems thinking’ approach to develop long-term adaptive strategies that turn their wastewater treatment plants into water resource recovery facilities. At these sites, energy self-sufficiency goals and new revenue streams could be pursued through implementation of onsite bioenergy generation and co-digestion of food waste and sewage sludge.
Commercialisation of hydrogen, biogas, biomethane and carbon capture and storage in the gas sector can result in significant decarbonisation benefits and new opportunities for the transport sector.
Overall, the pathways towards decarbonisation, while technically feasible, need to balance the energy ‘trilemma’: energy security, energy affordability and environmental outcomes.
by Andy Gregory
by Ashleigh Turner
by Dr. Ben Cook, Eoin Noble